

TDLNA2050EP: 2.0 – 5.0 GHz GaAs Ultra Low Noise Amplifier

1.0 Features

- Small signal gain @ 3,600MHz: 17.5 dB
- NF @ 3,600 MHz: 1.5 dB
- OP1dB @ 3,600 MHz: 12.0 dBm
- OIP3dB @ 3,600 MHz: 33.0 dBm
- 5 V Typical operating voltage
- Operating frequency: 2.0 to 5.0 GHz

2.0 Applications

- Avionics
- Distributed Antenna Systems
- GPS Receivers
- Communications
- Military

3.0 Description

The TDLNA2050EP is a high frequency version of TDLNA0430SEP which is a broadband, ultra-low Noise Amplifier (LNA). With a simple input and output match, this LNA can be tuned for different frequency bands targeting LTE (small cells and infrastructure), radar and any other applications requiring low noise, high gain, and linearity.

The TDLNA2050EP is packaged in a compact, low-cost Dual Flat No Lead (DFN) $2 \times 2 \times 0.75$ mm, 8-pin, plastic package.

Figure 1.1 Device Image* (8 Pin 2×2×0.75 mm QFN Package)

RoHS/REACH/Halogen Free Compliance

Figure 2.1 Function Block Diagram (Top View)

4.0 Ordering Information

Table 4.1 Ordering Information

Base Part Number	Package Type	Orderable Part Number	
TL2050E	8 Pin 2×2×0.75 mm DFN	TDLNA2050EP	
Tuned Evalu	TDLNA2050EP-EVB-A		
Tuned Evalu	ation Board, 3700 - 4200 MHz	TDLNA2050EP-EVB-B	
Tuned Evaluation Board, 4400 - 5000 MHz TDLNA2050EP-			
Tuned Evalu	ation Board, 2900 - 3300 MHz	TDLNA2050EP-EVB-D	

*Reference section 13.0 page 15

5.0 Pin Description

Table 5.1 Pin Definition

Pin Number	Pin Name	Description
3-6, 8	NC	No internal connection, can be connected to ground
1		V _{enable} along with series resistor, sets the Idq. V _{enable} <0.2V
I	venable	disables the device
2	RFIN	RF Input. dc blocking cap required
7	RF _{OUT} /V _{dd}	RF Output. Vdd supplied through an external choke inductor
Baakaga Baaa	Doddlo/Slug	dc and RF Ground. Also provides thermal relief. Multiple vias
Fackage base	Faulte/Slug	are recommended

Note: [1] The backside ground slug of the device must be grounded directly to the ground plane through multiple vias to ensure proper operation. Adequate heatsinking required.

6.0 Absolute Maximum Rating

Table 6.1 Absolute Maximum Rating @T_A = +25 °C Unless Otherwise Specified

Parameter	Symbol	Value	Unit			
Electrical Ratings						
Supply voltage, V _{enable}	V _{dd}	+6	V			
Drain current	IDQ	70	mA			
RF input power CW	RFIN	23	dBm			
Storage Temperature Range	T _{st}	-55 to +150	°C			
Operating Temperature Range	T _{op}	-40 to +105	°C			
Maximum Junction Temperature	TJ	170	°C			
Thermal Rati	ngs					
Thermal Resistance (junction-to-case) – Bottom side	R _{θJC}	15.0	°C/W			
Soldering Temperature	Tsold	260	°C			
ESD Rating	<u>js</u>					
Human Body Model (HBM)	Level 1B	500 to <1000	V			
Charged Device Model (CDM)	Level C	≥1000	V			
Moisture Rating						
Moisture Sensitivity Level	MSL	1	-			

Attention:

Maximum ratings are absolute ratings. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding one or a combination of the absolute maximum ratings may cause permanent and irreversible damage to the device and/or to surrounding circuit.

7.0 Recommended dc Operating Conditions

Table 7.1 Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Drain Voltage	VDD		+5.0		V
Venable Voltage	Venable		+5.0		V
Drain Bias Current	I _{DQ} , Set by external resistor	45	60		mA
Venable Bias Current	bias		3.0		mA
Operating Temperature Range		-55	+25	+125	°C

8.0 Switching Time

Table 8.1 Switching time.

Parameter	Test Condition	Typical	Unit
Switching Rise Time /1	10/90% of the RF value	300	nsec
Switching Fall Time /1	10/90% of the RF value	350	nsec

9.0 RF Electrical Specifications

Table 9.1 EVB A 3,300-3,800MHz

Venable = 5 V, Idd = 60 mA, Vdd = 5 V, $@T_A = +25$ °C Unless Otherwise Specified

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across Band	13		22	dB
Noise Figure /1	Across Band		1.5		dB
EVB Noise Figure /1	Across Band		0.45 - 0.55		dB
Input Return Loss	Across Band	-14			dB
Output Return Loss	Across Band		-10		dB
OP1dB	Across Band	-12			dBm
OIP3 /1	Across Band ,0dBm per tone, Tone Spacing 1 MHz		33		dBm

All parametric data displayed in Tables 7.1 to 9.1 designated with /1 footnote are not tested in Production.

Table 9.2 EVB B 3,700-4,200MHz

Venable = 5 V, Idd = 60 mA, Vdd = 5 V, $@T_A = +25$ °C Unless Otherwise

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across Band		15.5-16.5		dB
Noise Figure	Across Band		0.5-0.6		dB
EVB Noise Figure	Across Band		0.6-0.7		dB
Input Return Loss	Across Band		-8 to -12		dB
Output Return Loss	Across Band		- 8 to -12		dB
OP1dB	Across Band		19-20.5		dBm
OIP3	Across Band, 0 dBm per tone, Tone Spacing 1 MHz		33-34		dBm

All parametric data displayed in Tables 9.2 to 9.4 are not tested in Production.

Table 9.3 EVB C 4,400-5,000 MHz

Venable = 5 V, Idd = 60 mA, Vdd = 5 V, @T_A = +25 °C Unless Otherwise Specified

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across Band		16		dB
Noise Figure	Across Band		0.55-0.65		dB
EVB Noise Figure	Across Band		0.7-0.8		dB
Input Return Loss	Across Band		10.4-12.4		dB
Output Return Loss	Across Band		7.5-9		dB
OP1dB	Across Band		18-20		dBm
OIP3	Across Band, 0dBm per tone, Tone Spacing 1 MHz		33-36		dBm

Table 9.4 EVB D 2,900-3,300 MHz

Venable = 5 V, Idd = 65 mA, Vdd = 5 V, $@T_A = +25$ °C Unless Otherwise Specified

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across Band	13	18.5-17.9		dB
Noise Figure	Across Band	0	0.35-0.45		dB
EVB Noise Figure	Across Band		0.4-0.5		dB
Input Return Loss	Across Band	14	-19 to -13		dB
Output Return Loss	Across Band	2	8.3-6		dB
OP1dB	Across Band	12	19.3-19.4		dBm
OIP3	Across Band, 0dBm per tone, Tone Spacing 1 MHz	20	33.8-35.5		dBm

10.0 Evaluation Board Details

10.1 EVB A 3.3-3.8 GHz

Figure 10.1 Schematic and EVB layout of the 3,300-3,800 MHz EVB-A

Component ID	Value	Manufacturer	Recommended Part Number	
M2	10 pF	Murata	GJM1555C1H100JB01	
M3	0.4 pF	Murata	GJM1555C1HR40BB01	
M6	3.3 nH	Coil craft	0402HP-3N3XGE	
M4	1.5 kΩ	Panasonic	ERJ-2RKF1501X	
M8	100 pF	AVX	04025A101JAT4A	
M9	100 nF	TDK	C1005X7R1H104K050BE	
M7	0 Ω	Panasonic	ERJ-2GE0R00X	
M11	220 pF	Kemet	C0402C221K5GACAUTO	
M13	1 nH	coil craft	0402HP-1N0XJE	
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

Table 10.1 BOM of the 3,300-3,800 MHz EVB A

10.2 EVB B 3.7-4.2 GHz

Table 10.2 BOM	of the 3,700-4	4,200 MHz EVB B

Component ID	Value	Manufacturer	Recommended Part Number	
M2	4.3 pF	Murata	GJM1555C1H4R3BB01	
M3	0.3 pF	Murata	GJM1555C1HR30BB01	
M4	1.5 kΩ	Panasonic	ERJ-2RKF1501X	
M8	100 pF	AVX	04025A101JAT4A	
M9	100 nF	TDK	C1005X7R1H104K050BE	
M6, M7	0 Ω	Panasonic	ERJ-2GE0R00X	
M11	10 pF	AVX	04025A100JAT4A	
Q1	GaAs LNA	Teledyne e2v HiRel	TDLNA2050EP	
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

10.3 EVB C 4.4-5.0 GHz

Figure 10.3 Schematic and EVB layout of the 4,400-5,000 MHz EVB-C

Table 10.3 BOM of the 4,400-5,000 MHz EVB C

Component ID	Value	Manufacturer Recommended Part Numbe		
M2	9.1 pF	Murata	GJM1555C1H9R1BB01	
M4	1.5 kΩ	Panasonic	ERJ-2RKF1501X	
M3	0.3 pF	Murata GJM1555C1HR30BE		
M8	100 pF	AVX	04025A101JAT4A	
M9	100 nF	TDK	C1005X7R1H104K050BE	
M6,M7	0 Ω	Panasonic ERJ-2GE0R00X		
M11	10 pF	AVX	04025A100JAT4A	
M12	0.3 pF	Murata	GJM1555C1HR30BB01	
Q1	GaAs LNA	Teledyne e2v HiRel	TDLNA2050EP	
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

10.4 EVB D 2.9-3.3 GHz

Figure 10.4 Schematic and EVB layout of the 2,900-3,300 MHz EVB-D

Table 10.4 BOM of the 2,900-3,300 MHz EVB D

Component ID	Value	Manufacturer	Recommended Part Number	
M2	10 pF	Murata	GJM1555C1H100JB01	
M3	0.4 pF	Murata	GJM1555C1HR40BB01	
M6	3.3 nH	Coil craft / Wurth Electronics	0402HP-3N3XGE / 744916033	
M4	1.5 kΩ	Panasonic	ERJ-2RKF1501X	
M8	100 pF	AVX	04025A101JAT4A	
M9	100 nF	TDK	C1005X7R1H104K050BE	
M7	0 Ω	Panasonic	ERJ-2GE0R00X	
M11	220 pF	Kemet	C0402C221K5GACAUTO	
M13	1 nH	Coil craft / Wurth Electronics 0402HP-1N0XJE /744916		
Q1	GaAs LNA	Teledyne e2v HiRel TDLNA2050EP		
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

11.0 Typical Characteristics

Test Conditions: Vdd = 5 V, Cold = -55 °C, Room = 25 °C, Hot = 125 °C

11.0 Typical Characteristics (continued)

Test Conditions: Vdd = 5 V, Cold = -55 °C, Room = 25 °C, Hot = 125 °C

11.0 Typical Characteristics (continued)

Test Conditions: Vdd = 5 V, Cold = -55 °C, Room = 25 °C, Hot = 125 °C

11.0 Typical Characteristics (continued)

Test Conditions: As noted @ Room = 25 °C

TDLNA2050EP

12.0 Test Procedures

Biasing Sequence

To properly bias the TDLNA2050EP-EVB-A, follow these steps: Connect the supply Ground the Ground test point.

- Apply bias to the Venable = 5 V test points.
- Apply bias to the Vdd = 5 V test point.
- Apply an RF input signal.

The TDLNA2050EP-EVB-A is shipped fully assembled and tested. Figure 12.1 illustrates a basic test setup diagram for evaluating s-parameters, which includes gain, input output return loss and reverse isolation using a network analyzer. Follow these steps to complete the test setup and verify the operation of the TDLNA2050EP-EVB-A:

- 1. Connect the Ground test point to the ground terminal of the power supply.
- 2. Connect the Venable and Vdd test points to the voltage output terminal of a 5 V supply that sources a current of approximately 60 mA.
- 3. Connect a calibrated network analyzer to the RF-in, and RF-out SMA connectors. Sweep the frequency from 1 GHz to 6 GHz and set the power to -25 dBm.

The TDLNA2050EP-EVB-A is expected to have a gain of 17.5 dB at 3.6 GHz. Refer to Figure 11.1.2 for the expected results.

Additional test equipment is required for a comprehensive evaluation of the device's functions and performance.

For noise figure evaluation, use either a noise figure analyzer or a spectrum analyzer with a noise option. It is recommended to use a low excess noise ratio (ENR) noise source.

For third-order intercept point evaluation, use two signal generators and a spectrum analyzer. A high isolation power combiner is recommended.

For power compression and power handling evaluations, use a two-channel power meter and a signal generator. Ensure that the input power amplifier has sufficient power capacity. Test accessories such as couplers and attenuators must also have adequate power handling capabilities.

Please note that measurements conducted at the SMA connectors of the TDLNA2050EP-EVB-A include the losses of the SMA connectors and the PCB. The through line should be measured to calibrate the effects of the TDLNA2050EP-EVB-A. The through line consists of an RF input line and an RF output line that are connected to the device and have equal lengths.

Figure 12.1 TEST Set Up Diagram

13.0 Device Package Information

XXXXX=Lot Mfg Code YYWW=Date Code Figure 13.1 Device Package Drawing (All dimensions are in mm) Not to scale.

Table 13.1 Device Package Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
A	0.75	±0.05	E	2.00 BSC	±0.05
A1	0.203	±0.02	E1	1.20	±0.05
b	0.25	±0.02	F	0.125	±0.02
D	2.00 BSC	±0.05	G	0.66	±0.03
D1	0.68	±0.03	L	0.35	±0.05
е	0.50 BSC	±0.05	К	0.40	±0.05

Note: Lead finish: Pure Sn without underlayer; Thickness: 7.5 μm ~ 20 μm (Typical 10 μm ~ 12 μm)

14.0 PCB Land Design

Guidelines:

[1] 2-layer PCB is recommended

[2] Via diameter is recommended to be 0.3mm to prevent solder wicking inside the vias

[3] Thermal vias shall only be placed on the center pad and should be filled/plugged with solder or copper

[4] The maximum via number for the center pad is $1(X) \times 2(Y) = 2$

(Recommended Values: S≥0.15 mm; Y≥0.20 mm; d=0.3 mm; Plating Thickness t = 25 µm or 50 µm)

15.0 PCB Stencil Design

Guidelines:

- [1] Laser-cut, stainless steel stencil is recommended with electro-polished trapezoidal walls to improve the paste release.
- [2] Stencil thickness is recommended to be 125 µm.

Figure 15.1 Stencil Openings (Dimensions are in mm)

Revision Information

Document	Description	Change/Revision Details / Date	
DLNA2050EP_Prod_Spec	Initial Release of the Product Specification data sheet	Rev 0.1 / 05_22_2024	

Document Categories and Definitions:

Advance Information

The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The data sheet contains preliminary data. Additional data may be added at a later date. Teledyne e2v HiRel Electronics reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The data sheet contains final data. In the event Teledyne e2v HiRel Electronics decides to change the specifications, Teledyne e2v HiRel Electronics will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

Sales Contact

For additional information, Email us at: hirel@teledyne.com website: www.tdehirel.com

Disclaimers

The information in this document is believed to be reliable. However, Teledyne e2v HiRel Electronics assumes no liability for the use of this information. Use shall be entirely at the user's own risk. No patent rights or licenses to any circuits described in this document are implied or granted to any third party. Teledyne e2v's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Teledyne e2v product could create a situation in which personal injury or death might occur. Teledyne e2v assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

Copyright and Trademark

Trademarks are the property of their respective owners.

©2024, Teledyne e2v HiRel Electronics. All rights reserved.